
Graphs and Graphing
Algorithms

1 / 126

1. The Graph Abstract Data Type

2. Breadth-First Search

3. Depth-First Search

4. Shortest Path Problems

5. Minimum Spanning Tree

2 / 126

7.1 Introduction

3 / 126

Graphs can be used to represent many interesting things about our world, including
systems of roads, airline flights, how the internet is connected, or even the sequence of
classes you must take.

4 / 126

Graphs can be used to represent many interesting things about our world, including
systems of roads, airline flights, how the internet is connected, or even the sequence of
classes you must take.

We will see in this chapter that once we have a good representation for a problem, we can
use some standard graph algorithms to solve what otherwise might seem to be a very
difficult problem!

4 / 126

Graphs can be used to represent many interesting things about our world, including
systems of roads, airline flights, how the internet is connected, or even the sequence of
classes you must take.

We will see in this chapter that once we have a good representation for a problem, we can
use some standard graph algorithms to solve what otherwise might seem to be a very
difficult problem!

A graph is just like a road map. If you have ever used one of the internet map sites, you
know that a computer can find the shortest, quickest, or easiest path from one place to
another.

4 / 126

7.2. Vocabulary and Definitions

5 / 126

Vertex: A vertex (also called a node) is a fundamental part of a graph. It can have a
name, which we will call the key. A vertex may also have additional information. We
will call this additional information the value or the payload.

6 / 126

Vertex: A vertex (also called a node) is a fundamental part of a graph. It can have a
name, which we will call the key. A vertex may also have additional information. We
will call this additional information the value or the payload.

Edge: An edge (also called an arc) is another fundamental part of a graph. An edge
connects two vertices to show that there is a relationship between them. Edges
may be one-way or two-way. If the edges in a graph are all one-way, we say that
the graph is a directed graph, or a digraph.

6 / 126

Vertex: A vertex (also called a node) is a fundamental part of a graph. It can have a
name, which we will call the key. A vertex may also have additional information. We
will call this additional information the value or the payload.

Edge: An edge (also called an arc) is another fundamental part of a graph. An edge
connects two vertices to show that there is a relationship between them. Edges
may be one-way or two-way. If the edges in a graph are all one-way, we say that
the graph is a directed graph, or a digraph.

Weight: Edges may be weighted to show that there is a cost to go from one vertex
to another, which we call edge cost. For example, in a graph of roads that connect
one city to another, the weight on the edge might represent the distance between
the two cities.

6 / 126

A graph can be represented by . For the graph , is a set of vertices and
is a set of edges. Each edge is a tuple where . We can add a third
component to the edge tuple to represent a weight. A subgraph is a set of edges and
vertices such that and .

G = (V , E) G V E

(v, w) v, w ∈ V

s e

v e ⊂ E v ⊂ V

7 / 126

A graph can be represented by . For the graph , is a set of vertices and
is a set of edges. Each edge is a tuple where . We can add a third
component to the edge tuple to represent a weight. A subgraph is a set of edges and
vertices such that and .

G = (V , E) G V E

(v, w) v, w ∈ V

s e

v e ⊂ E v ⊂ V

7 / 126

The above is a simple weighted digraph. Formally we can represent this graph as the set
of six vertices:

V = {v0, v1, v2, v3, v4, v5}

8 / 126

The above is a simple weighted digraph. Formally we can represent this graph as the set
of six vertices:

V = {v0, v1, v2, v3, v4, v5}

and the set of nine edges:

E =

⎧⎪
⎨
⎪⎩

(v0, v1, 5), (v1, v2, 4), (v2, v3, 9),

(v3, v4, 7), (v4, v0, 1), (v0, v5, 2),

(v5, v4, 8), (v3, v5, 3), (v5, v2, 1)

⎫⎪
⎬
⎪⎭

8 / 126

The example graph helps illustrate two other key graph terms:

Path: A path in a graph is a sequence of vertices that are connected by edges.
Formally we would define a path as such that for
all . The unweighted path length is the number of edges in the path,
specifically . The weighted path length is the sum of the weights of all the
edges in the path. For example, the path from to is the sequence of vertices

.

w1, w2, . . . , wn (wi, wi+1) ∈ E

1 ≤ i ≤ n − 1

n − 1

v3 v1

(v3, v4, v0, v1)

9 / 126

The example graph helps illustrate two other key graph terms:

Path: A path in a graph is a sequence of vertices that are connected by edges.
Formally we would define a path as such that for
all . The unweighted path length is the number of edges in the path,
specifically . The weighted path length is the sum of the weights of all the
edges in the path. For example, the path from to is the sequence of vertices

.

w1, w2, . . . , wn (wi, wi+1) ∈ E

1 ≤ i ≤ n − 1

n − 1

v3 v1

(v3, v4, v0, v1)

Cycle: A cycle in a directed graph is a path that starts and ends at the same vertex.
For example, the path is a cycle. A graph with no cycles is called an
acyclic graph. A directed graph with no cycles is called a directed acyclic graph
or a DAG. We will see that we can solve several important problems if the problem
can be represented as a DAG!

(v5, v2, v3, v5)

9 / 126

The example graph helps illustrate two other key graph terms:

Path: A path in a graph is a sequence of vertices that are connected by edges.
Formally we would define a path as such that for
all . The unweighted path length is the number of edges in the path,
specifically . The weighted path length is the sum of the weights of all the
edges in the path. For example, the path from to is the sequence of vertices

.

w1, w2, . . . , wn (wi, wi+1) ∈ E

1 ≤ i ≤ n − 1

n − 1

v3 v1

(v3, v4, v0, v1)

Cycle: A cycle in a directed graph is a path that starts and ends at the same vertex.
For example, the path is a cycle. A graph with no cycles is called an
acyclic graph. A directed graph with no cycles is called a directed acyclic graph
or a DAG. We will see that we can solve several important problems if the problem
can be represented as a DAG!

(v5, v2, v3, v5)

A tree is defined as a type of graph that is connected (There is a path between every pair
of vertices in the tree) and acyclic. We will explore different tree in detail in next chapter!

9 / 126

7.3. The Graph Abstract Data Type

10 / 126

Note that vertices may be either connected to each other or isolated. Edges join two
vertices and may be weighted.

11 / 126

Note that vertices may be either connected to each other or isolated. Edges join two
vertices and may be weighted.

Graph() : creates a new empty graph.

set_vertex(vert) : adds an instance of Vertex to the graph.

11 / 126

Note that vertices may be either connected to each other or isolated. Edges join two
vertices and may be weighted.

Graph() : creates a new empty graph.

set_vertex(vert) : adds an instance of Vertex to the graph.

add_edge(from_vert, to_vert) : adds a new directed edge to the graph that
connects two vertices.

add_edge(from_vert, to_vert, weight) : adds a new weighted directed edge
to the graph that connects two vertices.

11 / 126

get_vertex(vert_key) : finds the vertex in the graph named vert_key .

get_vertices() : returns the list of all vertices in the graph.

in : returns True for a statement vertex in graph if the given vertex is in the
graph, False otherwise.

12 / 126

get_vertex(vert_key) : finds the vertex in the graph named vert_key .

get_vertices() : returns the list of all vertices in the graph.

in : returns True for a statement vertex in graph if the given vertex is in the
graph, False otherwise.

Now that we have looked at the definition for the graph ADT, there are several ways we
can implement it. There are two well-known implementations of a graph, the adjacency
matrix and the adjacency list.

12 / 126

7.4. An Adjacency Matrix

13 / 126

One of the easiest ways to implement a graph is to use a two-dimensional matrix. Each of
the rows and columns represents a vertex in the graph. The value that is stored in the cell
at the intersection of row and column indicates if there is an edge.v w

14 / 126

One of the easiest ways to implement a graph is to use a two-dimensional matrix. Each of
the rows and columns represents a vertex in the graph. The value that is stored in the cell
at the intersection of row and column indicates if there is an edge.v w

14 / 126

When two vertices are connected by an edge, we say that they are adjacent and the value
in each cell represents the weight. The advantage of the adjacency matrix is that it is
simple, and for small graphs it is easy to see which nodes are connected to other nodes.
However, we can say that this matrix is sparse. A matrix is not a very efficient way to store
sparse data.

15 / 126

When two vertices are connected by an edge, we say that they are adjacent and the value
in each cell represents the weight. The advantage of the adjacency matrix is that it is
simple, and for small graphs it is easy to see which nodes are connected to other nodes.
However, we can say that this matrix is sparse. A matrix is not a very efficient way to store
sparse data.

The adjacency matrix is thus a good implementation for a graph when the number of
edges is large. Since there is one row and one column for every vertex in the graph, the
number of edges required to fill the matrix is .|V |2

15 / 126

When two vertices are connected by an edge, we say that they are adjacent and the value
in each cell represents the weight. The advantage of the adjacency matrix is that it is
simple, and for small graphs it is easy to see which nodes are connected to other nodes.
However, we can say that this matrix is sparse. A matrix is not a very efficient way to store
sparse data.

The adjacency matrix is thus a good implementation for a graph when the number of
edges is large. Since there is one row and one column for every vertex in the graph, the
number of edges required to fill the matrix is .|V |2

However, there are few real problems that approach this sort of connectivity. The
problems we will look at in this chapter all involve graphs that are sparsely connected!

15 / 126

7.5. An Adjacency List

16 / 126

A more space-efficient way to implement a sparsely connected graph is to use an
adjacency list. In this implementation, we keep a master list of all the vertices in the
Graph object, and each vertex object in the graph maintains a list of the other vertices
that it is connected to.

17 / 126

A more space-efficient way to implement a sparsely connected graph is to use an
adjacency list. In this implementation, we keep a master list of all the vertices in the
Graph object, and each vertex object in the graph maintains a list of the other vertices
that it is connected to.

In our implementation of the Vertex class we will use a dictionary rather than a list,
where the dictionary keys are the vertices and the values are the weights.

17 / 126

A more space-efficient way to implement a sparsely connected graph is to use an
adjacency list. In this implementation, we keep a master list of all the vertices in the
Graph object, and each vertex object in the graph maintains a list of the other vertices
that it is connected to.

In our implementation of the Vertex class we will use a dictionary rather than a list,
where the dictionary keys are the vertices and the values are the weights.

The advantage of the adjacency list implementation is that it allows us to compactly
represent a sparse graph. The adjacency list also allows us to easily find all the links that
are directly connected to a particular vertex!

17 / 126

18 / 126

7.6. Implementation

19 / 126

In [1]: class Vertex:
 def __init__(self, key):
 self.key = key
 self.neighbors = {}

 def get_neighbor(self, other):
 return self.neighbors.get(other, None)
 def set_neighbor(self, other, weight=0):
 self.neighbors[other] = weight

 def get_neighbors(self):
 return self.neighbors.keys()
 def get_key(self):
 return self.key

 def __repr__(self):
 return f"Vertex({self.key})"
 def __str__(self):
 return (str(self.key) + " connected to: " + str([x.key for x in
 self.neighbors]))

20 / 126

In [1]: class Vertex:
 def __init__(self, key):
 self.key = key
 self.neighbors = {}

 def get_neighbor(self, other):
 return self.neighbors.get(other, None)
 def set_neighbor(self, other, weight=0):
 self.neighbors[other] = weight

 def get_neighbors(self):
 return self.neighbors.keys()
 def get_key(self):
 return self.key

 def __repr__(self):
 return f"Vertex({self.key})"
 def __str__(self):
 return (str(self.key) + " connected to: " + str([x.key for x in
 self.neighbors]))

Each Vertex uses a dictionary to keep track of the vertices to which it is connected and
the weight of each edge. Note that the constructor simply initializes the key, which will
typically be a string and the get_neighbor() method returns the weight of the edge
from this vertex to the vertex passed as a parameter.

20 / 126

In [2]: class Graph:
 def __init__(self):
 self.vertices = {}

 def set_vertex(self, key):
 self.vertices[key] = Vertex(key)
 def add_edge(self, from_vert, to_vert, weight=0):
 if from_vert not in self.vertices:
 self.set_vertex(from_vert)
 if to_vert not in self.vertices:
 self.set_vertex(to_vert)
 self.vertices[from_vert].set_neighbor(self.vertices[to_vert], weight)

 def get_vertex(self, key):
 return self.vertices.get(key, None)
 def get_vertices(self):
 return self.vertices.keys()

 def __contains__(self, key):
 return key in self.vertices
 def __iter__(self):
 return iter(self.vertices.values())

21 / 126

In [2]: class Graph:
 def __init__(self):
 self.vertices = {}

 def set_vertex(self, key):
 self.vertices[key] = Vertex(key)
 def add_edge(self, from_vert, to_vert, weight=0):
 if from_vert not in self.vertices:
 self.set_vertex(from_vert)
 if to_vert not in self.vertices:
 self.set_vertex(to_vert)
 self.vertices[from_vert].set_neighbor(self.vertices[to_vert], weight)

 def get_vertex(self, key):
 return self.vertices.get(key, None)
 def get_vertices(self):
 return self.vertices.keys()

 def __contains__(self, key):
 return key in self.vertices
 def __iter__(self):
 return iter(self.vertices.values())

The Graph class, also contains a dictionary that maps vertex names to vertex objects.
Note that we have implemented the __iter__ method to make it easy to iterate over all
the vertex objects in a particular graph.

21 / 126

Now let us define the graph that we have seen earlier. First we create six vertices
numbered 0 through 5. Then we display the vertex dictionary. Notice that for each key 0
through 5 we have created an instance of a Vertex :

22 / 126

Now let us define the graph that we have seen earlier. First we create six vertices
numbered 0 through 5. Then we display the vertex dictionary. Notice that for each key 0
through 5 we have created an instance of a Vertex :

In [3]: g = Graph()
for i in range(6):
 g.set_vertex(i)

g.vertices

Out[3]: {0: Vertex(0),
 1: Vertex(1),
 2: Vertex(2),
 3: Vertex(3),
 4: Vertex(4),
 5: Vertex(5)}

22 / 126

Next, we add the edges that connect the vertices together. Finally, a nested loop verifies
that each edge in the graph is properly stored:

23 / 126

Next, we add the edges that connect the vertices together. Finally, a nested loop verifies
that each edge in the graph is properly stored:

In [4]: g.add_edge(0, 1, 5)
g.add_edge(0, 5, 2)
g.add_edge(1, 2, 4)
g.add_edge(2, 3, 9)
g.add_edge(3, 4, 7)
g.add_edge(3, 5, 3)
g.add_edge(4, 0, 1)
g.add_edge(5, 4, 8)
g.add_edge(5, 2, 1)

for v in g:
 for w in v.get_neighbors():
 print(f"({v.get_key()}, {w.get_key()}, {v.get_neighbor(w)})")

(0, 1, 5)
(0, 5, 2)
(1, 2, 4)
(2, 3, 9)
(3, 4, 7)
(3, 5, 3)
(4, 0, 1)
(5, 4, 8)
(5, 2, 1)

23 / 126

7.7. The Word Ladder Problem

24 / 126

To begin our study of graph algorithms let's consider the following puzzle called a word
ladder: transform the word FOOL into the word SAGE. In a word ladder puzzle you must
make the change occur gradually by changing one letter at a time.

25 / 126

To begin our study of graph algorithms let's consider the following puzzle called a word
ladder: transform the word FOOL into the word SAGE. In a word ladder puzzle you must
make the change occur gradually by changing one letter at a time.

At each step you must transform one word into another word; you are not allowed to
transform a word into a non-word. The following sequence of words shows one
possible solution to the problem posed above:

25 / 126

To begin our study of graph algorithms let's consider the following puzzle called a word
ladder: transform the word FOOL into the word SAGE. In a word ladder puzzle you must
make the change occur gradually by changing one letter at a time.

At each step you must transform one word into another word; you are not allowed to
transform a word into a non-word. The following sequence of words shows one
possible solution to the problem posed above:

FOOL
POOL
POLL
POLE
PALE
SALE
SAGE

25 / 126

There are many variations of the word ladder puzzle. For example you might be given a
particular number of steps in which to accomplish the transformation, or you might need
to use a particular word. In this section we are interested in figuring out the smallest
number of transformations needed to turn the starting word into the ending word.

26 / 126

There are many variations of the word ladder puzzle. For example you might be given a
particular number of steps in which to accomplish the transformation, or you might need
to use a particular word. In this section we are interested in figuring out the smallest
number of transformations needed to turn the starting word into the ending word.

Here is an outline of where we are going:

Represent the relationships between the words as a graph.

26 / 126

There are many variations of the word ladder puzzle. For example you might be given a
particular number of steps in which to accomplish the transformation, or you might need
to use a particular word. In this section we are interested in figuring out the smallest
number of transformations needed to turn the starting word into the ending word.

Here is an outline of where we are going:

Represent the relationships between the words as a graph.

Use the graph algorithm known as breadth-first search to find an efficient path
from the starting word to the ending word.

26 / 126

7.8. Building the Word Ladder Graph

27 / 126

Our first problem is to figure out how to turn a large collection of words into a graph.
What we would like is to have an edge from one word to another if the two words are
only different by a single letter.

28 / 126

Our first problem is to figure out how to turn a large collection of words into a graph.
What we would like is to have an edge from one word to another if the two words are
only different by a single letter.

If we can create such a graph, then any path from one word to another is a solution to the
word ladder puzzle!

28 / 126

Our first problem is to figure out how to turn a large collection of words into a graph.
What we would like is to have an edge from one word to another if the two words are
only different by a single letter.

If we can create such a graph, then any path from one word to another is a solution to the
word ladder puzzle!

28 / 126

Let's start with the assumption that we have a list of words that are all the same length. As
a starting point, we can create a vertex in the graph for every word in the list.

29 / 126

Let's start with the assumption that we have a list of words that are all the same length. As
a starting point, we can create a vertex in the graph for every word in the list.

To figure out how to connect the words, we could compare each word in the list with
every other. When we compare we are looking to see how many letters are different. If the
two words in question are different by only one letter, we can create an edge between
them in the graph.

29 / 126

Let's start with the assumption that we have a list of words that are all the same length. As
a starting point, we can create a vertex in the graph for every word in the list.

To figure out how to connect the words, we could compare each word in the list with
every other. When we compare we are looking to see how many letters are different. If the
two words in question are different by only one letter, we can create an edge between
them in the graph.

For a small set of words that approach would work fine. However, let's suppose we have a
list of . Roughly speaking, comparing one word to every other word on the list
is an algorithm. For 5,110 words, is more than 26 million comparisons!

5,110 words
O(n2)

29 / 126

https://wordsrated.com/tools/wordslists/4-letter-words/

We can do much better by assuming that we have a number of buckets, each labeled with
a four-letter word, except that one of the letters on the label has been replaced by an
underscore. As we process a list of words, we compare each word with each bucket using
the underscore (_) as a wildcard.

30 / 126

We can do much better by assuming that we have a number of buckets, each labeled with
a four-letter word, except that one of the letters on the label has been replaced by an
underscore. As we process a list of words, we compare each word with each bucket using
the underscore (_) as a wildcard.

Every time we find a matching bucket we put the word in that bucket, so that both POPE
and POPS would both go into the POP_ bucket. Once we have all the words in the
appropriate buckets, we know that all the words in each bucket must be connected!

30 / 126

We can do much better by assuming that we have a number of buckets, each labeled with
a four-letter word, except that one of the letters on the label has been replaced by an
underscore. As we process a list of words, we compare each word with each bucket using
the underscore (_) as a wildcard.

Every time we find a matching bucket we put the word in that bucket, so that both POPE
and POPS would both go into the POP_ bucket. Once we have all the words in the
appropriate buckets, we know that all the words in each bucket must be connected!

30 / 126

In [5]: import sys
sys.path.append("./pythonds3/")
from pythonds3.graphs import Graph

31 / 126

In [5]: import sys
sys.path.append("./pythonds3/")
from pythonds3.graphs import Graph

In [6]: def build_graph(words):
 buckets = {}
 the_graph = Graph()
 all_words = words
 # create buckets of words that differ by 1 letter
 for line in all_words:
 word = line.strip()
 for i, _ in enumerate(word):
 bucket = f"{word[:i]}_{word[i + 1 :]}"
 buckets.setdefault(bucket, set()).add(word)

 # add edges between different words in the same bucket
 for similar_words in buckets.values():
 for word1 in similar_words:
 for word2 in similar_words - {word1}:
 the_graph.add_edge(word1, word2)
 return the_graph

31 / 126

We can implement the scheme we have just described by using a dictionary. The labels on
the buckets we have just described are the keys in our dictionary. The value stored for
each key is a list of words.

32 / 126

We can implement the scheme we have just described by using a dictionary. The labels on
the buckets we have just described are the keys in our dictionary. The value stored for
each key is a list of words.

Since this is our first real-world graph problem, you might be wondering how sparse the
graph is. The list of four-letter words we have for this problem is 5,110 words long. If we
were to use an adjacency matrix, the matrix would have
cells. The graph constructed by the build_graph() function has exactly 53,286 edges,
so the matrix would have only 0.20% of the cells filled! That is a very sparse matrix indeed.

5, 110 ⋅ 5, 110 = 26, 112, 100

32 / 126

7.9. Implementing Breadth-First Search

33 / 126

With the graph constructed we can now turn our attention to the algorithm we will use to
find the shortest solution to the word ladder problem. The graph algorithm we are going
to use is called the breadth-first search (BFS), and it is one of the easiest algorithms for
searching a graph!

34 / 126

With the graph constructed we can now turn our attention to the algorithm we will use to
find the shortest solution to the word ladder problem. The graph algorithm we are going
to use is called the breadth-first search (BFS), and it is one of the easiest algorithms for
searching a graph!

Given a starting vertex of a graph, a breadth first search proceeds by exploring edges in
the graph to find all the vertices in for which there is a path from .

s

G s

34 / 126

With the graph constructed we can now turn our attention to the algorithm we will use to
find the shortest solution to the word ladder problem. The graph algorithm we are going
to use is called the breadth-first search (BFS), and it is one of the easiest algorithms for
searching a graph!

Given a starting vertex of a graph, a breadth first search proceeds by exploring edges in
the graph to find all the vertices in for which there is a path from .

s

G s

The remarkable thing about a breadth-first search is that it finds all the vertices that are a
distance from before it finds any vertices that are a distance .k s k + 1

34 / 126

To keep track of its progress, BFS colors each of the vertices white, gray, or black. All the
vertices are initialized to white when they are constructed. A white vertex is an
undiscovered vertex. When a vertex is initially discovered it is colored gray, and when BFS
has completely explored a vertex it is colored black.

35 / 126

To keep track of its progress, BFS colors each of the vertices white, gray, or black. All the
vertices are initialized to white when they are constructed. A white vertex is an
undiscovered vertex. When a vertex is initially discovered it is colored gray, and when BFS
has completely explored a vertex it is colored black.

This means that once a vertex is colored black, it has no white vertices adjacent to it. A
gray node, on the other hand, may have some white vertices adjacent to it, indicating that
there are still additional vertices to explore.

35 / 126

To keep track of its progress, BFS colors each of the vertices white, gray, or black. All the
vertices are initialized to white when they are constructed. A white vertex is an
undiscovered vertex. When a vertex is initially discovered it is colored gray, and when BFS
has completely explored a vertex it is colored black.

This means that once a vertex is colored black, it has no white vertices adjacent to it. A
gray node, on the other hand, may have some white vertices adjacent to it, indicating that
there are still additional vertices to explore.

The bfs() shown below uses the adjacency list graph representation we developed
earlier. In addition it uses a Queue , a crucial point as we will see, to decide which vertex
to explore next.

35 / 126

In [7]: from pythonds3.basic import Queue
from pythonds3.graphs import Graph # This is the extended version

def bfs(start):
 start.distance = 0
 start.previous = None
 vert_queue = Queue()
 vert_queue.enqueue(start)
 while vert_queue.size() > 0:
 current = vert_queue.dequeue()
 for neighbor in current.get_neighbors():
 if neighbor.color == "white":
 neighbor.color = "gray"
 neighbor.distance = current.distance + 1
 neighbor.previous = current
 vert_queue.enqueue(neighbor)
 current.color = "black"

36 / 126

In [7]: from pythonds3.basic import Queue
from pythonds3.graphs import Graph # This is the extended version

def bfs(start):
 start.distance = 0
 start.previous = None
 vert_queue = Queue()
 vert_queue.enqueue(start)
 while vert_queue.size() > 0:
 current = vert_queue.dequeue()
 for neighbor in current.get_neighbors():
 if neighbor.color == "white":
 neighbor.color = "gray"
 neighbor.distance = current.distance + 1
 neighbor.previous = current
 vert_queue.enqueue(neighbor)
 current.color = "black"

The BFS algorithm uses an extended version of the Vertex class that adds three new
instance variables: distance , previous , and color . Each of these instance variables
also has the appropriate getter and setter methods.

36 / 126

BFS begins at the starting vertex start and paints it gray. Two other values, the
distance and the previous , are initialized to 0 and None respectively. Finally, start
is placed on a Queue . The next step is to begin to systematically explore vertices at the
front of the queue. We explore each new node at the front of the queue by iterating over
its adjacency list.

37 / 126

BFS begins at the starting vertex start and paints it gray. Two other values, the
distance and the previous , are initialized to 0 and None respectively. Finally, start
is placed on a Queue . The next step is to begin to systematically explore vertices at the
front of the queue. We explore each new node at the front of the queue by iterating over
its adjacency list.

As each node on the adjacency list is examined, its color is checked. If it is white four
things happen:

1. The new unexplored vertex neighbor is colored gray.

2. The predecessor of neighbor is set to the current node current .

37 / 126

BFS begins at the starting vertex start and paints it gray. Two other values, the
distance and the previous , are initialized to 0 and None respectively. Finally, start
is placed on a Queue . The next step is to begin to systematically explore vertices at the
front of the queue. We explore each new node at the front of the queue by iterating over
its adjacency list.

As each node on the adjacency list is examined, its color is checked. If it is white four
things happen:

1. The new unexplored vertex neighbor is colored gray.

2. The predecessor of neighbor is set to the current node current .

3. The distance to neighbor is set to the distance to current + 1 .

4. neighbor is added to the end of a queue. This effectively schedules this node for
further exploration, but not until all the other vertices on the adjacency list of
current have been explored!

37 / 126

38 / 126

Starting from FOOL we take all nodes that are adjacent to FOOL and add them to the
queue. The adjacent nodes include POOL , FOIL , FOUL , and COOL . Each of these nodes
are new nodes to expand.

38 / 126

39 / 126

In the next step bfs removes the next node (POOL) from the front of the queue and
repeats the process for all of its adjacent nodes.

39 / 126

The next vertex on the queue is FOIL . The only new node that FOIL can add to the tree
is FAIL . As bfs continues to process the queue, neither of the next two nodes adds
anything new to the queue or the tree. Below shows the tree and the queue after
expanding all the vertices on the second level of the tree:

40 / 126

The next vertex on the queue is FOIL . The only new node that FOIL can add to the tree
is FAIL . As bfs continues to process the queue, neither of the next two nodes adds
anything new to the queue or the tree. Below shows the tree and the queue after
expanding all the vertices on the second level of the tree:

40 / 126

41 / 126

The amazing thing about the breadth-first search solution is that we have not only solved
the FOOL–SAGE problem we started out with, but we have solved many other problems
along the way.

42 / 126

The amazing thing about the breadth-first search solution is that we have not only solved
the FOOL–SAGE problem we started out with, but we have solved many other problems
along the way.

We can start at any vertex in the breadth-first search tree and follow the predecessor
arrows back to the root to find the shortest word ladder from any word back to FOOL .

42 / 126

The amazing thing about the breadth-first search solution is that we have not only solved
the FOOL–SAGE problem we started out with, but we have solved many other problems
along the way.

We can start at any vertex in the breadth-first search tree and follow the predecessor
arrows back to the root to find the shortest word ladder from any word back to FOOL .

In [8]: def traverse(starting_vertex):
 current = starting_vertex
 while current:
 print(current.key, end="")
 if current.previous:
 print("->", end="")
 current = current.previous

42 / 126

In [9]: g = build_graph(["fool","cool","pool","poll","pole","pall","fall",
 "fail","foil","foul","pope","pale","sale","sage","page"])
bfs(g.get_vertex("fool"))
traverse(g.get_vertex("sage"))

sage->sale->pale->pall->poll->pool->fool

43 / 126

In [9]: g = build_graph(["fool","cool","pool","poll","pole","pall","fall",
 "fail","foil","foul","pope","pale","sale","sage","page"])
bfs(g.get_vertex("fool"))
traverse(g.get_vertex("sage"))

sage->sale->pale->pall->poll->pool->fool

In [10]: header = f"{'Key':^8}|{'Color':^8}|{'Distance':^8}|{'Discover':^4}|{'Closing'
print(header)
for key in g.get_vertices():
 vertex = g.get_vertex(key)
 print(vertex)

 Key | Color |Distance|Discover|Closing|Previous
 fool | black | 0 | 0 | 0 |None
 pool | black | 1 | 0 | 0 |fool
 cool | black | 1 | 0 | 0 |fool
 foil | black | 1 | 0 | 0 |fool
 foul | black | 1 | 0 | 0 |fool
 poll | black | 2 | 0 | 0 |pool
 pall | black | 3 | 0 | 0 |poll
 pole | black | 3 | 0 | 0 |poll
 pale | black | 4 | 0 | 0 |pall
 pope | black | 4 | 0 | 0 |pole
 fall | black | 3 | 0 | 0 |fail
 fail | black | 2 | 0 | 0 |foil
 sale | black | 5 | 0 | 0 |pale
 page | black | 5 | 0 | 0 |pale
 sage | black | 6 | 0 | 0 |sale

43 / 126

7.10. Breadth-First Search Analysis

44 / 126

Let's analyze the run time performance of the breadth-first search algorithm. The first
thing to observe is that the while loop is executed, at most, one time for each vertex in
the graph (up to iterations). You can see that this is true because a vertex must be
white before it can be examined and added to the queue.

|V |

45 / 126

Let's analyze the run time performance of the breadth-first search algorithm. The first
thing to observe is that the while loop is executed, at most, one time for each vertex in
the graph (up to iterations). You can see that this is true because a vertex must be
white before it can be examined and added to the queue.

|V |

This gives us for the while loop. The for loop, which is nested inside the while ,
is executed at most once for each edge in the graph (up to iterations). The reason is
that every vertex is dequeued at most once and we examine an edge from node to
node only when node is dequeued.

O(|V |)
|E|

u

v u

45 / 126

Let's analyze the run time performance of the breadth-first search algorithm. The first
thing to observe is that the while loop is executed, at most, one time for each vertex in
the graph (up to iterations). You can see that this is true because a vertex must be
white before it can be examined and added to the queue.

|V |

This gives us for the while loop. The for loop, which is nested inside the while ,
is executed at most once for each edge in the graph (up to iterations). The reason is
that every vertex is dequeued at most once and we examine an edge from node to
node only when node is dequeued.

O(|V |)
|E|

u

v u

This gives us for the for loop. Combining the two loops gives us .O(|E|) O(|V | + |E|)

45 / 126

Of course doing the breadth-first search is only part of the task. Following the links from
the starting node to the goal node is the other part of the task.

46 / 126

Of course doing the breadth-first search is only part of the task. Following the links from
the starting node to the goal node is the other part of the task.

The worst case for this would be if the graph was a single long chain. In this case
traversing through all of the vertices would be . The normal case is going to be
some fraction of .

O(|V |)
|V |

46 / 126

Of course doing the breadth-first search is only part of the task. Following the links from
the starting node to the goal node is the other part of the task.

The worst case for this would be if the graph was a single long chain. In this case
traversing through all of the vertices would be . The normal case is going to be
some fraction of .

O(|V |)
|V |

Finally, at least for this problem, there is the time required to build the initial graph.

46 / 126

7.11. The Knight's Tour Problem

47 / 126

Another classic problem that we can use to illustrate a second common graph algorithm
is called the knight's tour. The knight's tour puzzle is played on a chess board with a
single chess piece, the knight.

48 / 126

Another classic problem that we can use to illustrate a second common graph algorithm
is called the knight's tour. The knight's tour puzzle is played on a chess board with a
single chess piece, the knight.

The object of the puzzle is to find a sequence of moves that allow the knight to visit every
square on the board exactly once. One such sequence is called a tour.

48 / 126

Another classic problem that we can use to illustrate a second common graph algorithm
is called the knight's tour. The knight's tour puzzle is played on a chess board with a
single chess piece, the knight.

The object of the puzzle is to find a sequence of moves that allow the knight to visit every
square on the board exactly once. One such sequence is called a tour.

The upper bound on the number of possible legal tours for an chessboard is known
to be ; however, there are even more possible dead ends.

8 × 8
1.2 × 1046

48 / 126

https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour

Although researchers have studied many different algorithms to solve the knight's tour
problem, a graph search is one of the easiest to understand and program. Once again we
will solve the problem using two main steps:

49 / 126

Although researchers have studied many different algorithms to solve the knight's tour
problem, a graph search is one of the easiest to understand and program. Once again we
will solve the problem using two main steps:

Represent the legal moves of a knight on a chessboard as a graph.

49 / 126

Although researchers have studied many different algorithms to solve the knight's tour
problem, a graph search is one of the easiest to understand and program. Once again we
will solve the problem using two main steps:

Represent the legal moves of a knight on a chessboard as a graph.

Use a graph algorithm to find a path of length where every
vertex on the graph is visited exactly once!

rows × columns − 1

49 / 126

7.12. Building the Knight's Tour Graph

50 / 126

To represent the knight's tour problem as a graph we will use the following two ideas:
each square on the chessboard can be represented as a node in the graph and each legal
move by the knight can be represented as an edge in the graph.

51 / 126

To represent the knight's tour problem as a graph we will use the following two ideas:
each square on the chessboard can be represented as a node in the graph and each legal
move by the knight can be represented as an edge in the graph.

51 / 126

In [12]: from pythonds3.graphs import Graph

def knight_graph(board_size):
 kt_graph = Graph()
 for row in range(board_size):
 for col in range(board_size):
 node_id = row * board_size + col
 new_positions = gen_legal_moves(row, col, board_size)
 for row2, col2 in new_positions:
 other_node_id = row2 * board_size + col2
 kt_graph.add_edge(node_id, other_node_id)
 return kt_graph

52 / 126

In [12]: from pythonds3.graphs import Graph

def knight_graph(board_size):
 kt_graph = Graph()
 for row in range(board_size):
 for col in range(board_size):
 node_id = row * board_size + col
 new_positions = gen_legal_moves(row, col, board_size)
 for row2, col2 in new_positions:
 other_node_id = row2 * board_size + col2
 kt_graph.add_edge(node_id, other_node_id)
 return kt_graph

The knight_grap() function makes one pass over the entire board. At each square on
the board the function calls a helper, gen_legal_moves() , to create a list of legal moves
for that position on the board.

52 / 126

In [12]: from pythonds3.graphs import Graph

def knight_graph(board_size):
 kt_graph = Graph()
 for row in range(board_size):
 for col in range(board_size):
 node_id = row * board_size + col
 new_positions = gen_legal_moves(row, col, board_size)
 for row2, col2 in new_positions:
 other_node_id = row2 * board_size + col2
 kt_graph.add_edge(node_id, other_node_id)
 return kt_graph

The knight_grap() function makes one pass over the entire board. At each square on
the board the function calls a helper, gen_legal_moves() , to create a list of legal moves
for that position on the board.

All legal moves are then converted into edges in the graph. Each location on the board is
converted into a linear vertex number.

52 / 126

The gen_legal_moves() takes the position of the knight on the board and generates
each of the eight possible moves, making sure those moves are still within the board:

53 / 126

The gen_legal_moves() takes the position of the knight on the board and generates
each of the eight possible moves, making sure those moves are still within the board:

In [13]: def gen_legal_moves(row, col, board_size):
 new_moves = []
 move_offsets = [
 (-1, -2), # left-down-down
 (-1, 2), # left-up-up
 (-2, -1), # left-left-down
 (-2, 1), # left-left-up
 (1, -2), # right-down-down
 (1, 2), # right-up-up
 (2, -1), # right-right-down
 (2, 1), # right-right-up
]
 for r_off, c_off in move_offsets:
 if 0 <= row + r_off < board_size and 0 <= col + c_off < board_size:
 new_moves.append((row + r_off, col + c_off))
 return new_moves

53 / 126

54 / 126

The figure shows the complete graph of possible moves on an board. There are
exactly 336 edges in the graph. Notice that the vertices corresponding to the edges of the
board have fewer connections (legal moves) than the vertices in the middle of the board.

8 × 8

55 / 126

The figure shows the complete graph of possible moves on an board. There are
exactly 336 edges in the graph. Notice that the vertices corresponding to the edges of the
board have fewer connections (legal moves) than the vertices in the middle of the board.

8 × 8

Once again we can see how sparse the graph is. If the graph was fully connected there
would be 4,096 edges. Since there are only 336 edges, the adjacency matrix would be only
8.2 percent full!

55 / 126

7.13. Implementing Knight’s Tour

56 / 126

The search algorithm we will use to solve the knight's tour problem is called depth-first
search (DFS). Whereas the breadth-first search algorithm builds a search tree one level at
a time, a depth-first search creates a search tree by exploring one branch of the tree as
deeply as possible.

57 / 126

The search algorithm we will use to solve the knight's tour problem is called depth-first
search (DFS). Whereas the breadth-first search algorithm builds a search tree one level at
a time, a depth-first search creates a search tree by exploring one branch of the tree as
deeply as possible.

We will look at two algorithms that implement DFS. The first algorithm we will look at
specifically solves the knight's tour problem by explicitly forbidding a node to be visited
more than once.

57 / 126

The search algorithm we will use to solve the knight's tour problem is called depth-first
search (DFS). Whereas the breadth-first search algorithm builds a search tree one level at
a time, a depth-first search creates a search tree by exploring one branch of the tree as
deeply as possible.

We will look at two algorithms that implement DFS. The first algorithm we will look at
specifically solves the knight's tour problem by explicitly forbidding a node to be visited
more than once.

The second implementation is more general, but allows nodes to be visited more than
once as the tree is constructed. The second version is used in subsequent sections to
develop additional graph algorithms.

57 / 126

The depth-first exploration of the graph is exactly what we need in order to find a path
through 64 vertices (one for each square on the chessboard) and 63 edges.

58 / 126

The depth-first exploration of the graph is exactly what we need in order to find a path
through 64 vertices (one for each square on the chessboard) and 63 edges.

We will see that when the depth-first search algorithm finds a dead end (a place in the
graph where there are no more moves possible) it backs up the tree to the next deepest
vertex that allows it to make a legal move.

58 / 126

The depth-first exploration of the graph is exactly what we need in order to find a path
through 64 vertices (one for each square on the chessboard) and 63 edges.

We will see that when the depth-first search algorithm finds a dead end (a place in the
graph where there are no more moves possible) it backs up the tree to the next deepest
vertex that allows it to make a legal move.

The knight_tour() below takes four parameters: n , the current depth in the search
tree; path, a list of vertices visited up to this point; u , the vertex in the graph we wish
to explore; and limit , the number of nodes in the path.

58 / 126

In [14]: def knight_tour(n, path, u, limit):
 u.color = "gray"
 path.append(u)
 if n < limit:
 neighbors = sorted(list(u.get_neighbors()))
 i = 0
 done = False
 while i < len(neighbors) and not done:
 if neighbors[i].color == "white":
 done = knight_tour(n + 1, path, neighbors[i], limit)
 i = i + 1
 if not done: # prepare to backtrack
 path.pop()
 u.color = "white" # Not added to path yet return to unvisited
 else:
 done = True
 return done

59 / 126

In [14]: def knight_tour(n, path, u, limit):
 u.color = "gray"
 path.append(u)
 if n < limit:
 neighbors = sorted(list(u.get_neighbors()))
 i = 0
 done = False
 while i < len(neighbors) and not done:
 if neighbors[i].color == "white":
 done = knight_tour(n + 1, path, neighbors[i], limit)
 i = i + 1
 if not done: # prepare to backtrack
 path.pop()
 u.color = "white" # Not added to path yet return to unvisited
 else:
 done = True
 return done

The function is recursive. When the function is called, it first checks the base case
condition. If we have a path that contains 64 vertices, we return from knight_tour()
with a status of True , indicating that we have found a successful tour. If the path is not
long enough, we continue to explore one level deeper by choosing a new vertex to
explore and calling it recursively for that vertex.

59 / 126

DFS also uses colors to keep track of which vertices in the graph have been visited.
Unvisited vertices are colored white, and visited vertices are colored gray. If all neighbors
of a particular vertex have been explored and we have not yet reached our goal length of
64 vertices, we have reached a dead end and must backtrack.

60 / 126

DFS also uses colors to keep track of which vertices in the graph have been visited.
Unvisited vertices are colored white, and visited vertices are colored gray. If all neighbors
of a particular vertex have been explored and we have not yet reached our goal length of
64 vertices, we have reached a dead end and must backtrack.

Backtracking happens when we return from knight_tour() with a status of False . In
the breadth-first search we used a queue to keep track of which vertex to visit next. Since
depth-first search is recursive, we are implicitly using a stack to help us with our
backtracking.

60 / 126

DFS also uses colors to keep track of which vertices in the graph have been visited.
Unvisited vertices are colored white, and visited vertices are colored gray. If all neighbors
of a particular vertex have been explored and we have not yet reached our goal length of
64 vertices, we have reached a dead end and must backtrack.

Backtracking happens when we return from knight_tour() with a status of False . In
the breadth-first search we used a queue to keep track of which vertex to visit next. Since
depth-first search is recursive, we are implicitly using a stack to help us with our
backtracking.

When we return from a call with a status of False , we remain inside the while loop
and look at the next vertex in neighbors.

60 / 126

Let's look at a simple example of knight_tour() in action. You can refer to the figures
below to follow the steps of the search. For this example we will assume that the call to
the get_neighbors() method on line 5 orders the nodes in alphabetical order. We
begin by calling knight_tour(1, path, A, 6) .

61 / 126

Let's look at a simple example of knight_tour() in action. You can refer to the figures
below to follow the steps of the search. For this example we will assume that the call to
the get_neighbors() method on line 5 orders the nodes in alphabetical order. We
begin by calling knight_tour(1, path, A, 6) .

61 / 126

Let's look at a simple example of knight_tour() in action. You can refer to the figures
below to follow the steps of the search. For this example we will assume that the call to
the get_neighbors() method on line 5 orders the nodes in alphabetical order. We
begin by calling knight_tour(1, path, A, 6) .

61 / 126

62 / 126

62 / 126

63 / 126

63 / 126

When we return the list, path has the values [A, B, D, E, F, C] , which is the order
we need to traverse the graph to visit each node exactly once.

64 / 126

When we return the list, path has the values [A, B, D, E, F, C] , which is the order
we need to traverse the graph to visit each node exactly once.

In [15]: board_size = 8
kt_graph = knight_graph(board_size)
path = []
start = kt_graph.get_vertex(0)
finished = knight_tour(1, path, start, board_size * board_size)
if finished:
 solution = [(v.get_key() // board_size, v.get_key() % board_size)
 for v in path]
 print("One possible path:")
 print(solution)
else:
 print("No path found.")

One possible path:
[(0, 0), (1, 2), (0, 4), (1, 6), (2, 4), (0, 3), (1, 1), (2, 3), (0,
2), (1, 0), (2, 2), (0, 1), (1, 3), (0, 5), (1, 7), (2, 5), (0, 6),
(1, 4), (2, 6), (0, 7), (1, 5), (2, 7), (3, 5), (4, 3), (3, 1), (5,
0), (4, 2), (2, 1), (3, 3), (4, 1), (2, 0), (3, 2), (4, 0), (6, 1),
(5, 3), (3, 4), (4, 6), (6, 7), (7, 5), (5, 4), (7, 3), (6, 5), (7,
7), (5, 6), (3, 7), (4, 5), (5, 7), (3, 6), (4, 4), (6, 3), (7, 1),
(5, 2), (6, 0), (7, 2), (6, 4), (7, 6), (5, 5), (4, 7), (6, 6), (7,
4), (6, 2), (7, 0), (5, 1), (3, 0)]

64 / 126

In [16]: import matplotlib.pyplot as plt
def visualize_knight_path(board_size, path):
 # Create a board with alternating colors
 board = [[(i+j) % 2 for j in range(board_size)] for i in range(board_size
 fig, ax = plt.subplots()
 ax.imshow(board, cmap='gray', interpolation='nearest')
 # Draw the path
 for i in range(len(path) - 1):
 start = path[i]
 end = path[i + 1]
 ax.plot([start[1], end[1]], [start[0], end[0]], 'ro-', linewidth=2, ma
 # Mark the start and end points
 start = path[0]
 end = path[-1]
 ax.plot(start[1], start[0], 'go', markersize=12) # start point in green
 ax.plot(end[1], end[0], 'bo', markersize=12) # end point in blue
 # Set up the plot grid, labels, and title
 ax.set_xticks(range(board_size))
 ax.set_yticks(range(board_size))
 ax.set_xticklabels(range(1, board_size + 1))
 ax.set_yticklabels(range(1, board_size + 1))
 ax.set_title("Knight's Tour Path Visualization")
 # Show the plot
 plt.gca().invert_yaxis() # Invert y-axis to match the chessboard represen
 plt.show()

65 / 126

In [17]: visualize_knight_path(board_size, solution) #NP-hard

66 / 126

In []: header = f"{'Key':^8}|{'Color':^8}|{'Distance':^8}|{'Discover':^4}|{'Closing'
print(header)
for key in kt_graph.get_vertices():
 vertex = kt_graph.get_vertex(key)
 print(vertex)

67 / 126

7.14. Knight's Tour Analysis

68 / 126

knight_tour() is very sensitive to the method you use to select the next vertex to visit.
For example, on a board you can produce a path in about 1.5 seconds on a
reasonably fast computer. But what happens if you try an board? In this case,
depending on the speed of your computer, you may have to wait up to several minutes to
get the results!

5 × 5
8 × 8

69 / 126

knight_tour() is very sensitive to the method you use to select the next vertex to visit.
For example, on a board you can produce a path in about 1.5 seconds on a
reasonably fast computer. But what happens if you try an board? In this case,
depending on the speed of your computer, you may have to wait up to several minutes to
get the results!

5 × 5
8 × 8

The reason for this is that the knight's tour problem as we have implemented it so far is
an exponential algorithm of size , where is the number of squares on the chess
board, and is a small constant.

O(kN) N

k

69 / 126

knight_tour() is very sensitive to the method you use to select the next vertex to visit.
For example, on a board you can produce a path in about 1.5 seconds on a
reasonably fast computer. But what happens if you try an board? In this case,
depending on the speed of your computer, you may have to wait up to several minutes to
get the results!

5 × 5
8 × 8

The reason for this is that the knight's tour problem as we have implemented it so far is
an exponential algorithm of size , where is the number of squares on the chess
board, and is a small constant.

O(kN) N

k

We can use a tree to help us undertand this point. The root of the tree represents the
starting point of the search. From there the algorithm generates and checks each of the
possible moves the knight can make.

69 / 126

knight_tour() is very sensitive to the method you use to select the next vertex to visit.
For example, on a board you can produce a path in about 1.5 seconds on a
reasonably fast computer. But what happens if you try an board? In this case,
depending on the speed of your computer, you may have to wait up to several minutes to
get the results!

5 × 5
8 × 8

The reason for this is that the knight's tour problem as we have implemented it so far is
an exponential algorithm of size , where is the number of squares on the chess
board, and is a small constant.

O(kN) N

k

We can use a tree to help us undertand this point. The root of the tree represents the
starting point of the search. From there the algorithm generates and checks each of the
possible moves the knight can make.

As we have noted before, the number of moves possible depends on the position of the
knight on the board. In the corners there are only two legal moves, on the squares
adjacent to the corners there are three, and in the middle of the board there are eight.

69 / 126

70 / 126

At the next level of the tree there are once again between two and eight possible next
moves from the position we are currently exploring. The number of possible positions to
examine corresponds to the number of nodes in the search tree.

70 / 126

71 / 126

For a tree with nodes that may have up to eight children, the number of nodes is large.
Because the branching factor of each node is variable, we could estimate the number of
nodes using an average branching factor. The important thing to note is that this
algorithm is exponential: , where is the average branching factor for the
board.

kN+1 − 1 k

71 / 126

Let's look at how rapidly this grows! For a board that is the tree will be 25 levels
deep, or counting the first level as level 0. The average branching factor is

 so the number of nodes in the search tree is or .

5 × 5
N = 24

k = 3.8 3.825 − 1 3.12 × 1014

72 / 126

Let's look at how rapidly this grows! For a board that is the tree will be 25 levels
deep, or counting the first level as level 0. The average branching factor is

 so the number of nodes in the search tree is or .

5 × 5
N = 24

k = 3.8 3.825 − 1 3.12 × 1014

For a board, , there are nodes, and for a regular chess
board, , there are !

6 × 6 k = 4.4 1.5 × 1023 8 × 8
k = 5.25 1.2 × 1046

72 / 126

Let's look at how rapidly this grows! For a board that is the tree will be 25 levels
deep, or counting the first level as level 0. The average branching factor is

 so the number of nodes in the search tree is or .

5 × 5
N = 24

k = 3.8 3.825 − 1 3.12 × 1014

For a board, , there are nodes, and for a regular chess
board, , there are !

6 × 6 k = 4.4 1.5 × 1023 8 × 8
k = 5.25 1.2 × 1046

Of course, since there are multiple solutions to the problem we won't have to explore
every single node, but the fractional part of the nodes we do have to explore is just a
constant multiplier which does not change the exponential nature of the problem.

72 / 126

Luckily there is a way to speed up the case so that it runs in under one second. The
order_by_avail() will be used in place of the call to u.get_neighbors() . The critical
line in the function is line 5. This line ensures that we select the vertex that has the fewest
available moves to go next.

8 × 8

73 / 126

Luckily there is a way to speed up the case so that it runs in under one second. The
order_by_avail() will be used in place of the call to u.get_neighbors() . The critical
line in the function is line 5. This line ensures that we select the vertex that has the fewest
available moves to go next.

8 × 8

In [19]: def order_by_avail(n):
 res_list = []
 for v in n.get_neighbors():
 if v.color == "white":
 c = 0
 for w in v.get_neighbors():
 if w.color == "white":
 c = c + 1
 res_list.append((c, v))
 res_list.sort(key=lambda x: x[0])
 return [y[1] for y in res_list]

73 / 126

Luckily there is a way to speed up the case so that it runs in under one second. The
order_by_avail() will be used in place of the call to u.get_neighbors() . The critical
line in the function is line 5. This line ensures that we select the vertex that has the fewest
available moves to go next.

8 × 8

In [19]: def order_by_avail(n):
 res_list = []
 for v in n.get_neighbors():
 if v.color == "white":
 c = 0
 for w in v.get_neighbors():
 if w.color == "white":
 c = c + 1
 res_list.append((c, v))
 res_list.sort(key=lambda x: x[0])
 return [y[1] for y in res_list]

You might think this is really counterproductive; why not select the node that has the
most available moves?

73 / 126

The problem with using the vertex with the most available moves as your next vertex on
the path is that it tends to have the knight visit the middle squares early on in the tour!

74 / 126

The problem with using the vertex with the most available moves as your next vertex on
the path is that it tends to have the knight visit the middle squares early on in the tour!

When this happens it is easy for the knight to get stranded on one side of the board
where it cannot reach unvisited squares on the other side of the board. On the other
hand, visiting the squares with the fewest available moves first pushes the knight to visit
the squares around the edges of the board first.

74 / 126

The problem with using the vertex with the most available moves as your next vertex on
the path is that it tends to have the knight visit the middle squares early on in the tour!

When this happens it is easy for the knight to get stranded on one side of the board
where it cannot reach unvisited squares on the other side of the board. On the other
hand, visiting the squares with the fewest available moves first pushes the knight to visit
the squares around the edges of the board first.

This ensures that the knight will visit the hard-to-reach corners early and can use the
middle squares to hop across the board only when necessary. Utilizing this kind of
knowledge to speed up an algorithm is called a heuristic. This particular heuristic is called
Warnsdorff's algorithm.

74 / 126

In [20]: def knight_tour(n, path, u, limit):
 u.color = "gray"
 path.append(u)
 if n < limit:
 neighbors = order_by_avail(u)
 i = 0
 done = False
 while i < len(neighbors) and not done:
 if neighbors[i].color == "white":
 done = knight_tour(n + 1, path, neighbors[i], limit)
 i = i + 1
 if not done: # prepare to backtrack
 path.pop()
 u.color = "white"
 else:
 done = True
 return done

75 / 126

In [21]: board_size = 8
kt_graph = knight_graph(board_size)
path = []
start = kt_graph.get_vertex(0)
finished = knight_tour(1, path, start, board_size * board_size)
if finished:
 solution = [(v.get_key() // board_size, v.get_key() % board_size)
 for v in path]
 print("One possible path:")
 print(solution)
else:
 print("No path found.")

One possible path:
[(0, 0), (1, 2), (0, 4), (1, 6), (3, 7), (5, 6), (7, 7), (6, 5), (5,
7), (7, 6), (6, 4), (7, 2), (6, 0), (4, 1), (2, 0), (0, 1), (1, 3),
(0, 5), (1, 7), (2, 5), (0, 6), (2, 7), (4, 6), (6, 7), (7, 5), (6,
3), (7, 1), (5, 0), (3, 1), (1, 0), (0, 2), (2, 1), (4, 0), (5, 2),
(7, 3), (6, 1), (5, 3), (7, 4), (6, 2), (7, 0), (5, 1), (3, 0), (1,
1), (3, 2), (4, 4), (3, 6), (2, 4), (0, 3), (1, 5), (0, 7), (2, 6),
(4, 5), (3, 3), (1, 4), (2, 2), (3, 4), (4, 2), (2, 3), (3, 5), (4,
3), (5, 5), (4, 7), (6, 6), (5, 4)]

76 / 126

In [22]: visualize_knight_path(board_size, solution)

77 / 126

7.15. General Depth-First Search

78 / 126

The knight's tour is a special case of a depth-first search where the goal is to create the
deepest depth-first tree without any branches.

79 / 126

The knight's tour is a special case of a depth-first search where the goal is to create the
deepest depth-first tree without any branches.

The more general depth-first search is actually easier. Its goal is to search as deeply as
possible, connecting as many nodes in the graph as possible and branching where
necessary.

79 / 126

The knight's tour is a special case of a depth-first search where the goal is to create the
deepest depth-first tree without any branches.

The more general depth-first search is actually easier. Its goal is to search as deeply as
possible, connecting as many nodes in the graph as possible and branching where
necessary.

It is even possible that a depth-first search will create more than one tree. When the
depth-first search algorithm creates a group of trees we call this a depth-first forest.

79 / 126

As with the breadth-first search, our depth-first search makes use of predecessor links to
construct the tree. In addition, the depth-first search will make use of two additional
instance variables in the Vertex class. The new instance variables are the discovery and
closing times.

80 / 126

As with the breadth-first search, our depth-first search makes use of predecessor links to
construct the tree. In addition, the depth-first search will make use of two additional
instance variables in the Vertex class. The new instance variables are the discovery and
closing times.

The discovery time tracks the number of steps in the algorithm before a vertex is
first encountered.
The closing time is the number of steps in the algorithm before a vertex is colored
black.

80 / 126

As with the breadth-first search, our depth-first search makes use of predecessor links to
construct the tree. In addition, the depth-first search will make use of two additional
instance variables in the Vertex class. The new instance variables are the discovery and
closing times.

The discovery time tracks the number of steps in the algorithm before a vertex is
first encountered.
The closing time is the number of steps in the algorithm before a vertex is colored
black.

As we will see after looking at the algorithm, the discovery and closing times of the nodes
provide some interesting properties we can use in later algorithms.

80 / 126

In [23]: class DFSGraph(Graph):
 def __init__(self):
 super().__init__()
 self.time = 0

 def dfs(self):
 for vertex in self:
 vertex.color = "white"
 vertex.previous = -1
 for vertex in self:
 if vertex.color == "white":
 self.dfs_visit(vertex)

 def dfs_visit(self, start):
 start.color = "gray"
 self._time = self._time + 1
 start.discovery_time = self._time
 for next_vertex in start.get_neighbors():
 if next_vertex.color == "white":
 next_vertex.set_previous(start)
 self.dfs_visit(next_vertex)
 start.color = "black"
 self._time = self._time + 1
 start.closing_time = self._time

81 / 126

You will notice that the dfs() method iterates over all of the vertices in the graph calling
dfs_visit() on the nodes that are white.

82 / 126

You will notice that the dfs() method iterates over all of the vertices in the graph calling
dfs_visit() on the nodes that are white.

The reason we iterate over all the nodes, rather than simply searching from a chosen
starting node, is to make sure that all nodes in the graph are considered and that no
vertices are left out of the depth-first forest.

82 / 126

You will notice that the dfs() method iterates over all of the vertices in the graph calling
dfs_visit() on the nodes that are white.

The reason we iterate over all the nodes, rather than simply searching from a chosen
starting node, is to make sure that all nodes in the graph are considered and that no
vertices are left out of the depth-first forest.

It may look unusual to see the statement for vertex in self , but remember that in
this case self is an instance of the DFSGraph class, and iterating over all the vertices in
an instance of a graph is a natural thing to do.

82 / 126

The dfs_visit() method starts with a single vertex called start_vertex and explores
all of the neighboring white vertices as deeply as possible.

83 / 126

The dfs_visit() method starts with a single vertex called start_vertex and explores
all of the neighboring white vertices as deeply as possible.

If you look carefully at the code for dfs_visit() and compare it to breadth-first search,
what you should notice is that the algorithm is almost identical to bfs() except that on
the last line of the inner for loop, dfs_visit() calls itself recursively to continue the
search at a deeper level, whereas bfs() adds the node to a queue for later exploration!

83 / 126

The dfs_visit() method starts with a single vertex called start_vertex and explores
all of the neighboring white vertices as deeply as possible.

If you look carefully at the code for dfs_visit() and compare it to breadth-first search,
what you should notice is that the algorithm is almost identical to bfs() except that on
the last line of the inner for loop, dfs_visit() calls itself recursively to continue the
search at a deeper level, whereas bfs() adds the node to a queue for later exploration!

It is interesting to note that where bfs() uses a queue, dfs_visit() uses a stack. You
don't see a stack in the code, but it is implicit in the recursive call.

83 / 126

The following sequence of figures illustrates the depth-first search algorithm in action for
a small graph. In these figures, the dotted lines indicate edges that are checked, but the
node at the other end of the edge has already been added to the depth-first tree.

84 / 126

The following sequence of figures illustrates the depth-first search algorithm in action for
a small graph. In these figures, the dotted lines indicate edges that are checked, but the
node at the other end of the edge has already been added to the depth-first tree.

84 / 126

The following sequence of figures illustrates the depth-first search algorithm in action for
a small graph. In these figures, the dotted lines indicate edges that are checked, but the
node at the other end of the edge has already been added to the depth-first tree.

84 / 126

85 / 126

85 / 126

85 / 126

86 / 126

86 / 126

86 / 126

87 / 126

87 / 126

87 / 126

88 / 126

The discovery and closing times for each node display a property called the parenthesis
property. This property means that all the children of a particular node in the depth-first
tree have a later discovery time and an earlier closing time than their parent.

88 / 126

In [24]: g = DFSGraph()
g.add_edge('A', 'B')
g.add_edge('B', 'C')
g.add_edge('A', 'D')
g.add_edge('B', 'D')
g.add_edge('D', 'E')
g.add_edge('E', 'B')
g.add_edge('E', 'F')
g.add_edge('F', 'C')

Run DFS
g.dfs()

header = f"{'Key':^8}|{'Color':^8}|{'Distance':^8}|{'Discover':^4}|\
{'Closing':^8}|{'Previous'}"
print(header)
Print vertex states post-DFS
for key in g.get_vertices():
 vertex = g.get_vertex(key)
 print(vertex)

 Key | Color |Distance|Discover|Closing |Previous
 A | black | inf | 1 | 12 |None
 B | black | inf | 2 | 11 |A
 C | black | inf | 3 | 4 |B
 D | black | inf | 5 | 10 |B
 E | black | inf | 6 | 9 |D
 F | black | inf | 7 | 8 |E

89 / 126

7.16. Depth-First Search Analysis

90 / 126

The general running time for depth-first search is as follows. The loops in dfs() run in
, not counting what happens in dfs_visit() , since it is executed once for each

vertex in the graph.
O|V |

91 / 126

The general running time for depth-first search is as follows. The loops in dfs() run in
, not counting what happens in dfs_visit() , since it is executed once for each

vertex in the graph.
O|V |

In dfs_visit() the loop is executed once for each edge in the adjacency list of the
current vertex. Since it is only called recursively if the vertex is white, the loop will execute
a maximum of once for every edge in the graph, or . Therefore, the total time for
depth-first search is .

O(E)
O(|V | + |E|)

91 / 126

7.19. Shortest Path Problems

92 / 126

When you surf the web, send an email, or log in to a laboratory computer from another
location on campus, a lot of work is going on behind the scenes to get the information on
your computer transferred to another computer. The in-depth study of how information
flows from one computer to another over the internet is the primary topic for a class in
computer networking.

93 / 126

When you surf the web, send an email, or log in to a laboratory computer from another
location on campus, a lot of work is going on behind the scenes to get the information on
your computer transferred to another computer. The in-depth study of how information
flows from one computer to another over the internet is the primary topic for a class in
computer networking.

93 / 126

When you surf the web, send an email, or log in to a laboratory computer from another
location on campus, a lot of work is going on behind the scenes to get the information on
your computer transferred to another computer. The in-depth study of how information
flows from one computer to another over the internet is the primary topic for a class in
computer networking.

Figure above shows you a high-level overview of how communication on the internet
works. When you use your browser to request a web page from a server, the request must
travel over your local area network and out onto the internet through a router.

93 / 126

Each router on the internet is connected to one or more other routers. If you run the
traceroute command at different times of the day, you are likely to see that your
information flows through different routers at different times. This is because there is a
cost associated with each connection between a pair of routers that depends on the
volume of traffic, the time of day, and many other factors.

94 / 126

Each router on the internet is connected to one or more other routers. If you run the
traceroute command at different times of the day, you are likely to see that your
information flows through different routers at different times. This is because there is a
cost associated with each connection between a pair of routers that depends on the
volume of traffic, the time of day, and many other factors.

By this time it will not surprise you to learn that we can represent the network of routers
as a graph with weighted edges.

94 / 126

Each router on the internet is connected to one or more other routers. If you run the
traceroute command at different times of the day, you are likely to see that your
information flows through different routers at different times. This is because there is a
cost associated with each connection between a pair of routers that depends on the
volume of traffic, the time of day, and many other factors.

By this time it will not surprise you to learn that we can represent the network of routers
as a graph with weighted edges.

Figure below shows a small example of a weighted graph that represents the
interconnection of routers in the internet. The problem that we want to solve is to find the
shortest path, one with the smallest total weight along which to route any given message.

94 / 126

This problem should sound familiar because it is similar to the problem we solved using a
breadth-first search, except that here we are concerned with the total weight of the path
rather than the number of hops in the path. It should be noted that if all the weights are
equal, the problem is the same!

95 / 126

This problem should sound familiar because it is similar to the problem we solved using a
breadth-first search, except that here we are concerned with the total weight of the path
rather than the number of hops in the path. It should be noted that if all the weights are
equal, the problem is the same!

95 / 126

7.20. Dijkstra's Algorithm

96 / 126

Dijkstra's algorithm is an iterative algorithm that provides us with the shortest path from
one particular starting node to all other nodes in the graph. Again this is similar to the
results of a breadth-first search.

97 / 126

Dijkstra's algorithm is an iterative algorithm that provides us with the shortest path from
one particular starting node to all other nodes in the graph. Again this is similar to the
results of a breadth-first search.

To keep track of the total cost from the start node to each destination, we will make use
of the distance instance variable in the Vertex class. The distance instance variable
will contain the current total weight of the smallest weight path from the start to the
vertex in question.

97 / 126

Dijkstra's algorithm is an iterative algorithm that provides us with the shortest path from
one particular starting node to all other nodes in the graph. Again this is similar to the
results of a breadth-first search.

To keep track of the total cost from the start node to each destination, we will make use
of the distance instance variable in the Vertex class. The distance instance variable
will contain the current total weight of the smallest weight path from the start to the
vertex in question.

The algorithm iterates once for every vertex in the graph; however, the order that it
iterates over the vertices is controlled by a priority queue. The value that is used to
determine the order of the objects in the priority queue is distance.

97 / 126

A priority queue acts like a queue in that you dequeue an item by removing it from the
front. However, in a priority queue the logical order of items inside a queue is determined
by their priority. The highest priority items are at the front of the queue and the lowest
priority items are at the back.

98 / 126

A priority queue acts like a queue in that you dequeue an item by removing it from the
front. However, in a priority queue the logical order of items inside a queue is determined
by their priority. The highest priority items are at the front of the queue and the lowest
priority items are at the back.

Thus when you enqueue an item on a priority queue, the new item may move all the way
to the front.

98 / 126

A priority queue acts like a queue in that you dequeue an item by removing it from the
front. However, in a priority queue the logical order of items inside a queue is determined
by their priority. The highest priority items are at the front of the queue and the lowest
priority items are at the back.

Thus when you enqueue an item on a priority queue, the new item may move all the way
to the front.

When a vertex is first created, distance is set to a very large number. Theoretically you
would set distance to infinity, but in practice we just set it to a number that is larger than
any real distance we would have in the problem we are trying to solve.

98 / 126

In [29]: from pythonds3.trees.priority_queue import PriorityQueue #heapq
If checking the visited node, the algorithm can terminate
when there is negative edge
def dijkstra(graph, start):
 pq = PriorityQueue()
 start.distance = 0
 pq.insert((start.distance, start))
 visited = set() # Set to track visited vertices

 while not pq.is_empty():
 print(pq)
 distance, current_v = pq.delete()
 # Mark the vertex as visited once it's pulled from the queue
 visited.add(current_v)

 # Process each adjacent vertex
 for next_v in current_v.get_neighbors():
 if next_v in visited:
 continue # Skip if next vertex is already visited
 new_distance = distance + current_v.get_neighbor(next_v)
 if new_distance < next_v.distance:
 next_v.distance = new_distance
 next_v.previous = current_v
 if next_v in pq:
 pq.change_priority(next_v, new_distance)
 else:
 pq.insert((new_distance, next_v))

99 / 126

The PriorityQueue class stores tuples of (priority, key) pairs. This is an important
point, because Dijkstra's algorithm requires the key in the priority queue to match the key
of the vertex in the graph.

100 / 126

The PriorityQueue class stores tuples of (priority, key) pairs. This is an important
point, because Dijkstra's algorithm requires the key in the priority queue to match the key
of the vertex in the graph.

The priority is used for deciding the position of the key in the priority queue. In this
implementation we use the distance to the vertex as the priority because as we will see
when we are exploring the next vertex, we always want to explore the vertex that has the
smallest distance.

100 / 126

The PriorityQueue class stores tuples of (priority, key) pairs. This is an important
point, because Dijkstra's algorithm requires the key in the priority queue to match the key
of the vertex in the graph.

The priority is used for deciding the position of the key in the priority queue. In this
implementation we use the distance to the vertex as the priority because as we will see
when we are exploring the next vertex, we always want to explore the vertex that has the
smallest distance.

Note that there is a change_priority() method. This method is used when the
distance to a vertex that is already in the queue is reduced, and thus the vertex is moved
toward the front of the queue!

100 / 126

The PriorityQueue class stores tuples of (priority, key) pairs. This is an important
point, because Dijkstra's algorithm requires the key in the priority queue to match the key
of the vertex in the graph.

The priority is used for deciding the position of the key in the priority queue. In this
implementation we use the distance to the vertex as the priority because as we will see
when we are exploring the next vertex, we always want to explore the vertex that has the
smallest distance.

Note that there is a change_priority() method. This method is used when the
distance to a vertex that is already in the queue is reduced, and thus the vertex is moved
toward the front of the queue!

Let's walk through it. We begin with the vertex . The three vertices adjacent to it are
and . Since the initial distances to them are all initialized to sys.maxsize , the new
costs to get to them through the start node are all their direct costs. So we update the
costs to each of these three nodes. We also set the predecessor for each node to and
we add each node to the priority queue. We use the distance as the key for the priority
queue.

u v, w

x

u

100 / 126

101 / 126

101 / 126

102 / 126

102 / 126

103 / 126

103 / 126

In [30]: g = Graph()
g.add_edge('u', 'v', 2)
g.add_edge('v', 'u', 2)
g.add_edge('v', 'w', 3)
g.add_edge('w', 'v', 3)
g.add_edge('w', 'z', 5)
g.add_edge('z', 'w', 5)
g.add_edge('u', 'x', 1)
g.add_edge('x', 'u', 1)
g.add_edge('u', 'w', 5)
g.add_edge('w', 'u', 5)
g.add_edge('x', 'v', 2)
g.add_edge('v', 'x', 2)
g.add_edge('x', 'w', 3)
g.add_edge('w', 'x', 3)
g.add_edge('x', 'y', 1)
g.add_edge('y', 'x', 1)
g.add_edge('y', 'w', 1)
g.add_edge('w', 'y', 1)
g.add_edge('y', 'z', 1)
g.add_edge('z', 'y', 1)

104 / 126

In [31]: # Run
dijkstra(g, g.get_vertex('u'))

header = f"{'Key':^8}|{'Color':^8}|{'Distance':^8}|{'Discover':^8}|\
 {'Closing':^8}|{'Previous'}"
print(header)
Print vertex states
for key in g.get_vertices():
 vertex = g.get_vertex(key)
 print(vertex)

[(0, Vertex(u))]
[(1, Vertex(x)), (2, Vertex(v)), (5, Vertex(w))]
[(2, Vertex(v)), (4, Vertex(w)), (2, Vertex(y))]
[(2, Vertex(y)), (4, Vertex(w))]
[(3, Vertex(w)), (3, Vertex(z))]
[(3, Vertex(z))]
 Key | Color |Distance|Discover| Closing |Previous
 u | white | 0 | 0 | 0 |None
 v | white | 2 | 0 | 0 |u
 w | white | 3 | 0 | 0 |y
 z | white | 3 | 0 | 0 |y
 x | white | 1 | 0 | 0 |u
 y | white | 2 | 0 | 0 |x

105 / 126

In [32]: def find_path(graph, start_key, end_key):
 start_vertex = graph.get_vertex(start_key)
 end_vertex = graph.get_vertex(end_key)
 path = []
 current_vertex = end_vertex

 # Backtrack from the end vertex to the start
 # vertex using the 'previous' pointers
 while current_vertex is not None and current_vertex != start_vertex:
 path.append(current_vertex._key)
 current_vertex = current_vertex.previous

 # Check if a path exists, i.e., we are back at the start vertex
 if current_vertex is None:
 return "No path"
 else: # Include the start vertex in the path
 path.append(start_vertex._key)
 path.reverse() # Reverse the path to show it from start to end
 return path

Example of how to use the find_path function
dijkstra(g, g.get_vertex('u')) # Run Dijkstra from 'u'
path = find_path(g, 'u', 'z')
print("Path from 'u' to 'z':", " -> ".join(path))

[(0, Vertex(u))]
Path from 'u' to 'z': u -> x -> y -> z

106 / 126

It is important to note that Dijkstra's algorithm works only when the weights are all
positive. You should convince yourself that if you introduced a negative weight on one of
the edges of the graph, the algorithm would never exit.

107 / 126

It is important to note that Dijkstra's algorithm works only when the weights are all
positive. You should convince yourself that if you introduced a negative weight on one of
the edges of the graph, the algorithm would never exit.

We will note that to route messages through the internet, other algorithms are used for
finding the shortest path. One of the problems with using Dijkstra's algorithm on the
internet is that you must have a complete representation of the graph in order for the
algorithm to run. The implication of this is that every router has a complete map of all the
routers in the internet!

107 / 126

It is important to note that Dijkstra's algorithm works only when the weights are all
positive. You should convince yourself that if you introduced a negative weight on one of
the edges of the graph, the algorithm would never exit.

We will note that to route messages through the internet, other algorithms are used for
finding the shortest path. One of the problems with using Dijkstra's algorithm on the
internet is that you must have a complete representation of the graph in order for the
algorithm to run. The implication of this is that every router has a complete map of all the
routers in the internet!

In practice this is not the case and other variations of the algorithm allow each router to
discover the graph as they go.

107 / 126

7.21. Analysis of Dijkstra's Algorithm

108 / 126

Let's look at the running time of Dijkstra's algorithm. We first note that building the
priority queue takes time since we initially add every vertex in the graph to the
priority queue. Once the queue is constructed, the while loop is executed once for every
vertex since vertices are all added at the beginning and only removed after that.

O(|V |)

109 / 126

Let's look at the running time of Dijkstra's algorithm. We first note that building the
priority queue takes time since we initially add every vertex in the graph to the
priority queue. Once the queue is constructed, the while loop is executed once for every
vertex since vertices are all added at the beginning and only removed after that.

O(|V |)

Within that loop each call to delete() takes time. Taken together, that part
of the loop and the calls to delete() take . The for loop is executed
once for each edge in the graph, and within the for loop the call to change_priority()
takes time. So the combined running time is .

O(log |V |)
O(|V | × log |V |)

O(|E| × log |V |) O((|V | + |E|) × log |V |)

109 / 126

Exercise 1: Given a weighted directed graph with negative edges as follows, what is the resulting
shortest path from vertex A to D after performing Dijkstra's algorithm if we do check the visited node?

(A) A->B->D

(B) A->C->D

(C) A->E->G->D

(D) A->C->E->G->D
110 / 126

7.22. Prim's Spanning Tree Algorithm

111 / 126

For our last graph algorithm let's consider a problem that online game designers. The
problem is that they want to efficiently transfer a piece of information to anyone and
everyone who may be listening. This is important in gaming so that all the players know
the very latest position of every other player!

112 / 126

For our last graph algorithm let's consider a problem that online game designers. The
problem is that they want to efficiently transfer a piece of information to anyone and
everyone who may be listening. This is important in gaming so that all the players know
the very latest position of every other player!

112 / 126

There are some brute force solutions to this problem. To begin, the broadcast host has
some information that the listeners all need to receive. The simplest solution is for the
broadcasting host to keep a list of all of the listeners and send individual messages to
each.

113 / 126

There are some brute force solutions to this problem. To begin, the broadcast host has
some information that the listeners all need to receive. The simplest solution is for the
broadcasting host to keep a list of all of the listeners and send individual messages to
each.

In the above figure we show a small network with a broadcaster and some listeners. Using
this first approach, four copies of every message would be sent. Assuming that the least
cost path is used, let’s see how many times each router would handle the same message.

113 / 126

There are some brute force solutions to this problem. To begin, the broadcast host has
some information that the listeners all need to receive. The simplest solution is for the
broadcasting host to keep a list of all of the listeners and send individual messages to
each.

In the above figure we show a small network with a broadcaster and some listeners. Using
this first approach, four copies of every message would be sent. Assuming that the least
cost path is used, let’s see how many times each router would handle the same message.

All messages from the broadcaster go through router A, so A sees all four copies of every
message. Router C sees only one copy of each message for its listener. However, routers B
and D would see three copies of every message since routers B and D are on the
cheapest path for listeners 1, 2, and 4! When you consider that the broadcast host must
send hundreds of messages each second for a radio broadcast, that is a lot of extra traffic.

113 / 126

Another brute force solution is for the broadcast host to send a single copy of the
broadcast message and let the routers sort things out. In this case, the easiest solution is a
strategy called uncontrolled flooding:

114 / 126

Another brute force solution is for the broadcast host to send a single copy of the
broadcast message and let the routers sort things out. In this case, the easiest solution is a
strategy called uncontrolled flooding:

Each message starts with a time to live (TTL) value set to some number greater than or
equal to the number of edges between the broadcast host and its most distant listener.
Each router gets a copy of the message and passes the message on to all of its
neighboring routers. When the message is passed on the TTL is decreased. Because each
router continues to send copies of the message to all its neighbors until the TTL value
reaches 0, it is easy to convince yourself that uncontrolled flooding generates many more
unnecessary messages than our first strategy.

114 / 126

Another brute force solution is for the broadcast host to send a single copy of the
broadcast message and let the routers sort things out. In this case, the easiest solution is a
strategy called uncontrolled flooding:

Each message starts with a time to live (TTL) value set to some number greater than or
equal to the number of edges between the broadcast host and its most distant listener.
Each router gets a copy of the message and passes the message on to all of its
neighboring routers. When the message is passed on the TTL is decreased. Because each
router continues to send copies of the message to all its neighbors until the TTL value
reaches 0, it is easy to convince yourself that uncontrolled flooding generates many more
unnecessary messages than our first strategy.

The solution to this problem lies in the construction of a minimum weight spanning tree.
Formally we define the minimum spanning tree for a graph as follows. is
an acyclic subset of that connects all the vertices in . The sum of the weights of the
edges in is minimized.

T G = (V , E) T

E V

T

114 / 126

Below shows a simplified version of the broadcast graph and highlights the edges that
form a minimum spanning tree for the graph.

115 / 126

Below shows a simplified version of the broadcast graph and highlights the edges that
form a minimum spanning tree for the graph.

115 / 126

Below shows a simplified version of the broadcast graph and highlights the edges that
form a minimum spanning tree for the graph.

In this example A forwards the message to B. B forwards the message to D and C. D
forwards the message to E, which forwards it to F, which forwards it to G. No router sees
more than one copy of any message, and all the listeners that are interested see a copy of
the message.

115 / 126

The algorithm we will use to solve this problem is called Prim's algorithm. Prim's
algorithm belongs to a family of algorithms called the greedy algorithms that applies to
undirected graph because at each step it will choose the cheapest next step. In this case
the cheapest next step is to follow the edge with the lowest weight.

116 / 126

The algorithm we will use to solve this problem is called Prim's algorithm. Prim's
algorithm belongs to a family of algorithms called the greedy algorithms that applies to
undirected graph because at each step it will choose the cheapest next step. In this case
the cheapest next step is to follow the edge with the lowest weight.

While T is not yet a spanning tree
 Find an edge that is safe to add to the tree
 Add the new edge to T

116 / 126

The algorithm we will use to solve this problem is called Prim's algorithm. Prim's
algorithm belongs to a family of algorithms called the greedy algorithms that applies to
undirected graph because at each step it will choose the cheapest next step. In this case
the cheapest next step is to follow the edge with the lowest weight.

While T is not yet a spanning tree
 Find an edge that is safe to add to the tree
 Add the new edge to T

The trick is in the step that directs us to "find an edge that is safe." We define a safe edge
as any edge that connects a vertex that is in the spanning tree to a vertex that is not in the
spanning tree. This ensures that the tree will always remain a tree and therefore have no
cycles.

116 / 126

In [33]: import sys
from pythonds3.trees.priority_queue import PriorityQueue #heapq

def prim(graph, start):
 pq = PriorityQueue()
 for vertex in graph:
 vertex.distance = sys.maxsize
 vertex.previous = None
 start.distance = 0
 pq.heapify([(vertex.distance, vertex) for vertex in graph])
 while not pq.is_empty():
 print(pq)
 distance, current_v = pq.delete()
 for next_v in current_v.get_neighbors():
 new_distance = current_v.get_neighbor(next_v)
 if next_v in pq and new_distance < next_v.distance:
 next_v.previous = current_v
 next_v.distance = new_distance
 pq.change_priority(next_v, new_distance)

117 / 126

In [33]: import sys
from pythonds3.trees.priority_queue import PriorityQueue #heapq

def prim(graph, start):
 pq = PriorityQueue()
 for vertex in graph:
 vertex.distance = sys.maxsize
 vertex.previous = None
 start.distance = 0
 pq.heapify([(vertex.distance, vertex) for vertex in graph])
 while not pq.is_empty():
 print(pq)
 distance, current_v = pq.delete()
 for next_v in current_v.get_neighbors():
 new_distance = current_v.get_neighbor(next_v)
 if next_v in pq and new_distance < next_v.distance:
 next_v.previous = current_v
 next_v.distance = new_distance
 pq.change_priority(next_v, new_distance)

The following sequence of figures shows the algorithm in operation on our sample tree.
We begin with the starting vertex as A. The distances to all the other vertices are initialized
to infinity.

117 / 126

118 / 126

118 / 126

119 / 126

119 / 126

120 / 126

120 / 126

121 / 126

In [35]: g = Graph()
g.add_edge('A', 'B', 2)
g.add_edge('B', 'A', 2)
g.add_edge('A', 'C', 3)
g.add_edge('C', 'A', 3)
g.add_edge('B', 'D', 1)
g.add_edge('D', 'B', 1)
g.add_edge('B', 'C', 1)
g.add_edge('C', 'B', 1)
g.add_edge('B', 'E', 4)
g.add_edge('E', 'B', 4)
g.add_edge('D', 'E', 1)
g.add_edge('E', 'D', 1)
g.add_edge('C', 'F', 5)
g.add_edge('F', 'C', 5)
g.add_edge('E', 'F', 1)
g.add_edge('F', 'E', 1)
g.add_edge('F', 'G', 1)
g.add_edge('G', 'F', 1)

122 / 126

In [36]: # Example of how to use the find_path function
def print_spanning_tree(graph, start_vertex):
 """Prints the edges in the minimum spanning tree."""
 print("Edges in the Minimum Spanning Tree:")
 for vertex in graph:
 if vertex.previous is not None:
 print(f"({vertex.previous.key}, {vertex.key}) \
 with weight {vertex.get_neighbor(vertex.previous)}")

prim(g, g.get_vertex('A')) # Run prim from 'A'
print_spanning_tree(g, g.get_vertex('A'))

[(0, Vertex(A)), (9223372036854775807, Vertex(B)), (922337203685477580
7, Vertex(C)), (9223372036854775807, Vertex(D)), (9223372036854775807,
Vertex(E)), (9223372036854775807, Vertex(F)), (9223372036854775807, Ve
rtex(G))]
[(2, Vertex(B)), (9223372036854775807, Vertex(D)), (3, Vertex(C)), (92
23372036854775807, Vertex(G)), (9223372036854775807, Vertex(E)), (9223
372036854775807, Vertex(F))]
[(1, Vertex(C)), (1, Vertex(D)), (9223372036854775807, Vertex(F)), (92
23372036854775807, Vertex(G)), (4, Vertex(E))]
[(1, Vertex(D)), (4, Vertex(E)), (5, Vertex(F)), (9223372036854775807,
Vertex(G))]
[(1, Vertex(E)), (9223372036854775807, Vertex(G)), (5, Vertex(F))]
[(1, Vertex(F)), (9223372036854775807, Vertex(G))]
[(1, Vertex(G))]
Edges in the Minimum Spanning Tree:
(A, B) with weight 2
(B, C) with weight 1

(B, D) with weight 1
(D, E) with weight 1
(E, F) with weight 1
(F, G) with weight 1

123 / 126

Exercise 2: Considering the following graph, when Prim's algorithm is used and starts from node F,
what is the weight of the last edge to be added into the minimum spanning tree?

124 / 126

References

125 / 126

1. Textbook CH7

126 / 126

	7.1 Introduction
	7.2. Vocabulary and De nitions
	7.3. The Graph Abstract Data Type
	7.4. An Adjacency Matrix
	7.5. An Adjacency List
	7.6. Implementation
	7.7. The Word Ladder Problem
	7.8. Building the Word Ladder Graph
	7.9. Implementing Breadth-First Search
	7.10. Breadth-First Search Analysis
	7.11. The Knight's Tour Problem
	7.12. Building the Knight's Tour Graph
	7.13. Implementing Knight’s Tour
	7.14. Knight's Tour Analysis
	7.15. General Depth-First Search
	7.16. Depth-First Search Analysis
	7.19. Shortest Path Problems
	7.20. Dijkstra's Algorithm
	7.21. Analysis of Dijkstra's Algorithm
	7.22. Prim's Spanning Tree Algorithm

